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ABSTRACT
Stochastic Programs, which are programs that produce prob-
abilistic output, are a pivotal paradigm in various areas of
CS education from introductory programming to machine
learning and data science. Despite their importance, the
problem of automatically grading such programs remains
surprisingly unexplored. In this paper, we formalize the
problem of assessing stochastic programs and develop an
open-source assessment framework called StochasticGrade.
Based on hypothesis testing, StochasticGrade offers an
exponential speedup over standard two-sample hypothesis
tests on identifying incorrect programs, enables control over
the rate of grading errors, and allows users to select the
measure of proximity to the solution that is most appropri-
ate for the assignment. Moreover, the features calculated by
StochasticGrade can be used for fast and accurate clus-
tering of student programs by error type. We demonstrate
the accuracy and efficiency of StochasticGrade using stu-
dent data collected from 4 assignments in an introductory
programming course and conclude with practical guidelines
for practitioners who hope to use our framework.
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1. INTRODUCTION
Stochastic Programs, which are programs that generate prob-
abilistic output, have been a major driving force behind
modern computational advancements. They are fundamen-
tal to several areas within computer science, such as ma-
chine learning, randomized algorithms, cryptography, and
the study of large-scale systems. As a result, fluency at
the intersection of probability and computing has become a
core skill for computer science students [4], leading educa-
tors to actively incorporate probability theory into early pro-
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gramming curricula [31]. The CS education research com-
munity has also recently begun to acknowledge “probabilis-
tic and statistical methods for computing” as an important
paradigm of programming that “should be embraced by fu-
ture computing education” [10, 33].

In an area of such widespread educational demand, auto-
mated assessment presents a critical step towards massively
expanding the opportunities of learning and practice by al-
lowing efficient and objective evaluation of student work
[2, 25]. However, the inherent non-determinism of stochas-
tic programs poses several important challenges for grad-
ing. While the EDM research community has developed
many unit testers and automated assessment tools for deter-
ministic programs, there are no published studies on grad-
ing stochastic student programs to the best of our knowl-
edge. Although fixing the pseudo-random number generator
seed can make stochastic programs behave deterministically,
even slight differences in implementation can cause seman-
tically identical programs to behave completely differently
under the same seed. This makes existing auto-grading sys-
tems inapplicable to grading stochastic programs, requiring
a framework that can systematically account for randomness
in the grading process.

In this paper, we formally pose the problem of grading stochas-
tic programs and present an open-source1, sampling-based
assessment framework for grading and clustering. Our pro-
posed method, StochasticGrade, is based on the princi-
ples of hypothesis testing and has four key features: (1) it
achieves exponential speedup over standard hypothesis test-
ing on identifying error programs, (2) provides a controllable
rate of misgrades, (3) allows users to choose the measure of
proximity to the solution that best fits their assignment,
and (4) efficiently handles programs with multidimensional
output. Moreover, the features calculated by Stochastic-
Grade allow simple and effective clustering of student pro-
grams by error type. We make the following contributions:

• Problem of Grading Stochastic Programs. We formally
pose the problem of grading stochastic programs and
discuss its challenges.

• Efficient and Accurate Grading with an Adjustable Er-
ror Rate. StochasticGrade can adaptively adjust
the number of samples obtained from student pro-
grams based on the complexity of the error. It also

1https://github.com/yunsungkim0908/stochasticgrade



allows users to set the desired rate of misgrades and
choose a suitable “disparity function,” which measures
the dissimilarity between two samples throughout the
grading process. We showcase several disparity func-
tions and analyze their relative utilities.

• Clustering Programs by Error Type. We demonstrate
how StochasticGrade’s disparity measurements can
be used to identify clusters of student programs with
identical errors and provide 3 concrete ways to improve
the quality of clustering.

• Evaluation on Real Classroom Assignments. Based on
student-submitted responses to 4 undergraduate-level
programming assignments, we empirically validate the
accuracy and efficiency of our framework and conduct
a comparative analysis of the disparity functions.

• Practical Guidelines for Practitioners. We provide a
high-level summary and practical guidelines for prac-
titioners hoping to use our open-source framework.

1.1 Related Works

Automated Assessment of Student Programs. Tools for au-
tomatically assessing programs have been in use for “as long
as educators have asked students to build their own soft-
ware” [2]. Research on automated assessment methods has
recognized various paradigms of programming assignments
such as visual [7, 23, 40], web-based [28, 35], distributed [21],
and mobile [20, 36] programming, and has also developed
tools for specialized programming domains such as formal
language and logic [34, 3], assembly language [18], and database
queries [17, 26]. Our work expands this discourse by dis-
cussing the paradigm of stochastic programs, which serves a
vital role in various domains of computer science.

In much of existing automated assessment research, the no-
tion of the “correctness” of student programs has mainly
been understood to imply “providing an exactly right an-
swer whenever it is run with valid input” [10, Chapter 20].
Several studies have also developed ways to avoid evaluat-
ing the outputs directly by assessing alternative forms of
program representations such as grading based on visual
output [40] or abstract vector representations of code [22,
39]. Recent progress in the zero/few-shot learning capabil-
ities of large language models has also been leveraged for
grading based on source code [15, 24], but studies [15, 30]
have demonstrated that that this approach may suffer from
hallucination, certifiability, reproducibility, and high cost.
While none of these methods allows control over the rate of
grading error, we provide a method for grading stochastic
programs based on samples from the student programs with
an adjustable grading error rate.

Stochastic Programs in Computing Education. The growing
need for teaching probability theory in the specific context of
computer science has increasingly been recognized [33]. [4],
for instance, notes probability and statistics as “the most
connected mathematical topic” to computer science. Sev-
eral early-level courses have also been designed to amalga-
mate probabilistic thinking with the ideas of computation
and programming [31, 11, 29].

def program_3():
s0 = np.random.normal(0,1)
s1 = np.random.normal(1,2)
if (np.random.uniform() < 0.5):
return s0

else:
return s1

def program_2():
if (np.random.uniform() < 0.5):
return np.random.normal(0,1)

else:
return np.random.normal(1,2)

def program_1():
if (random.random() < 0.5):
return random.gauss(0,1)

else:
return random.gauss(1,2)

def program_5():
sample = np.random.randn()
if (np.random.uniform() < 0.5):
sample = sample*2 + 1

return sample

def program_4():
s1 = np.random.normal(1,2)
s0 = np.random.normal(0,1)
if (np.random.uniform() < 0.5):
return s0

else:
return s1

def program_6():
s0 = np.random.normal(0,1)
if (np.random.uniform() < 0.5):
return s0  

return np.random.normal(1,2)

Figure 1: Fixing the pseudorandom number generator
(PRNG) seed is insufficient for grading programs that use
randomness. The programs shown above implement the
same distribution but behave differently even with the same
PRNG seed. (See Section 1.2)

Studies also suggest stochastic programs as an effective tool
for developing probabilistic thinking. Seymour Papert in
[27], for instance, noted the affordances of programming
in LOGO language in helping young students understand
the concept of probability. More recently, [1, 8] have used
stochastic programs to develop tools to support children
learn probability. Similarly, [6, 37] recognize the value of
probabilistic programming for understanding the mechan-
ics of probability and probabilistic modeling, and several
courses on probabilistic modeling (in MIT and Stanford [12,
37], for instance) adopt this programming paradigm.

1.2 Grading Stochastic Programs
In this section, we formally define the problem of grading
stochastic programs and explain its challenges. Suppose that
a student is assigned the task of implementing a program
that generates a randomized output, and this output can be
translated into a number or a list of numbers. Given access
to the correct solution program C, the task of automated
grading is to determine whether the student-submitted pro-
gram P implements a probability distribution that is iden-
tical to C for all possible inputs to the program. The grader
is allowed to make calls to P and observe its outputs.

As noted earlier, the use of randomness poses a unique chal-
lenge for this task that cannot be addressed using methods
for grading deterministic programs. In particular, one may
expect to be able to grade by fixing the seed that initial-
izes the pseudorandom number generator, which can make
student programs behave deterministically. However, this
introduces systematic errors in grading that become appar-
ent even for simple assignment tasks.

For instance, consider the simple task of implementing a
program that draws samples from one of two distributions
— Gaussian N (0, 1) and N (1, 2) — with equal probability.
Figure 1 lists several correct implementations in Python,
each with slight variations in the packages used, the order in
which random functions are called, and the procedural logic.
These variations cause each program to behave differently
even when the PRNG seed is fixed to the same value. Con-
sidering that students often provide a surprisingly diverse



Test 𝒞 = 𝒫 at 
𝛼/64	significance-level

Start

Incorrect

Correct

Reject

Test 𝒞 = 𝒫 at 
𝛼/32	significance-level Incorrect

No Reject

No Reject

Test 𝒞 = 𝒫 at 
𝛼/2	significance-level Incorrect

No Reject

No Reject

Cumulative 
Sample Size 𝑛

400

1.6k

6.4k

…

Test 𝒞 = 𝒫 at 
𝛼/16	significance-level Incorrect

409.6k

…

Task: Grade student program 𝒫 against the solution 
program 𝒞 with false rejection rate ≤ 𝛼

Reject

Reject

Reject

Figure 2: StochasticGrade applies a series of hypothesis
tests on a cumulative set of samples obtained from student
programs. The significance level at each step is adjusted to
allow less elusive errors to be caught early while controlling
the overall false rejection rate. In Section 5, we also show
that the statistics calculated by StochasticGrade enable
fast and accurate clustering of programs by error type.

set of responses even to relatively simple open-ended assign-
ments [16], this illustrates the need for a grading framework
that inherently embraces randomness in the grading process.

2. STOCHASTICGRADE FRAMEWORK
We now present StochasticGrade (Figure 2, Algorithm 1),
our novel sampling-based assessment framework. Assessing
programs with probabilistic output is an application of hy-
pothesis testing at its core, as it examines the identity of the
student program with the solution program by examining
their samples. Unlike standard two-sample hypothesis tests
that use a fixed sample size, however, StochasticGrade
allows the required number of samples to vary adaptively
with the student programs being graded.

This adaptive sampling is achieved by applying a series
of two-sample hypothesis tests on an incremental, cumula-
tive set of samples, with controlled significance levels. This
multi-step process allows student programs with large dis-
crepancies from the solution to be detected early while main-
taining the overall false rejection rate (FRR) below the de-
sired threshold.

Formally, StochasticGrade (Algorithm 1) assumes access
to samples XC of size NC (set to a large value) obtained a
priori from the solution program C. At the time of grading,
it takes the following inputs from the user: the student pro-
gram P to be evaluated, the disparity function f , the mini-
mum and maximum sample sizesNmin andNmax, the sample
growth factor R, and the desired false rejection rate (FRR)
α, which is the probability of misgrading a correct program.
Upon completion, StochasticGrade predicts the correct-

Algorithm 1: StochasticGrade(P, f,Nmin, Nmax, R, α)

Data: Samples XC drawn a priori from solution
program C

Input: Student program P, Scoring function f ,
Minimum/Maximum sample sizes (Nmin, Nmax),
Sample growth factor R , False rejection rate
(FRR) α

Result: Grading P with false acceptance rate ≤ α
1 XP ← [] � For storing student program samples

2 L← logR (Nmax/Nmin) + 1 � Total number of steps

3 for i = 0, ..., L− 1 do
4 while XP has fewer than Ni = Ri ·Nmin samples do
5 Call P and append output to XP

6 Set the false rejection rate at step i to αi ← α/2L−i

7 Calculate discrepancy score D ← f(XC , XP)
8 ε← CriticalValue(f , αi, Size(XC), Size(XP))
9 if D ≥ ε then � Reject if too discrepant

10 return Incorrect

11 return Correct

ness of P with a desired FRR of at most α.

Grading proceeds in multiple iterations, where at each step,
the sample size grows by a factor of R (which we fix to 4
in our experiments) until the maximum number of samples
Nmax is reached. This results in a total of L iterations, where

L = logR

(
Nmax

Nmin

)
+ 1. (1)

At each step, the algorithm tests whether the samples XC
from the solution program and XP from the student pro-
gram could have originated from the same distribution. This
is done by calculating a disparity measurement D between
XC and XP using the disparity function f (Line 7), which
provides a measure of dissimilarity between a pair of sam-
ples. If at any step the measurement D exceeds the critical
value ε, indicating that the discrepancy between XP and
XC is unlikely to arise from random sampling, the algorithm
marks P as incorrect. This allows discrepant student pro-
grams to be rejected early before examining many samples.

Selecting the Critical Value ε. At step i, the threshold for
the disparity measurement at which P is marked incorrect
should be chosen so that the probability of misgrading the
solution program C is less than αi = α/2L−i:

PY ∼C(f(XC, Y ) ≥ ε) < αi. (2)

For most f , finding the exact value of ε for an arbitrary
XC can be intractable. However, in the limit as the size of
XC (denoted NC) approaches infinity, Inequality 2 becomes
identical to

PX,Y ∼C(f(X,Y ) ≥ ε) < αi, (3)

where X represents NC i.i.d. samples drawn from C. In this
case, the critical value ε is the (1−αi)-quantile

2 of f(X,Y )
for X and Y obtained from C, which is equivalent to a two-
sample hypothesis test on X and Y using D = f(X,Y ) as
the test statistic with significance level αi.
2The p-th quantile of the distribution of Z is the value z for
which P (Z ≤ z) = p.



Algorithm 2: Critical Value Selection Algorithm
CriticalValue(f, α,NC , NP ,M = 1000)

Data: Solution program C, samples XC drawn from C
Input: Disparity function f , False rejection rate α,

Solution sample size NC , Student program
sample size NP , # of Monte Carlo iterations M

Output: Critical value ε for FRR α
1 if f(X,Y ) has a known distribution for X,Y ∼ C with

sizes NC and NP then
2 return The (1− α)-quantile of f(X,Y )

3 Obtain M samples of f(XC , Y ) where Y is a sample
from C of size NP

4 return The (1− α)-quantile of the sampled f(XC , Y )’s

TheCriticalValue subroutine (Algorithm 2) embodies this
insight. If f is the statistic of a well-known hypothesis test
(for instance, the Anderson-Darling statistic for distribution
identity testing [32], or the Student’s t-statistic for testing
the identity of means), we set ε to be the critical value of the
corresponding two-sample test. Otherwise, CriticalValue
calculates a Monte Carlo estimate by simulating Y ∼ C
M times (line 3) and calculating the (1 − αi)-quantile of
f(XC , Y ) from these simulated samples (line 4). In practice,
the estimated ε may be cached to save future runtime.

2.1 The Batch Hypothesis Testing Baseline
StochasticGrade is best understood in comparison with
a standard two-sample hypothesis test. Each decision block
in Figure 2 (corresponding to steps 6 through 9 in Algo-
rithm 1) is comparable to a two-sample test of the null
hypothesis H0 : P = C against the alternative hypothesis
Ha : P ̸= C with significance level αi = α/2L−i, using the
disparity measurement D = f(XC , XP) as the test statistic.
Each test examines NC and Ni = Nmin · Ri samples each
from the solution and student programs, and these tests are
conducted in series on a cumulative set of student program
samples that grows each step by a factor of R.

Later in Section 4, we will compare this approach to the
simple and reasonable baseline of conducting a single two-
sample hypothesis test. This baseline approach, which we
call Batch Hypothesis Testing, will use the same statistic as
StochasticGrade on the full batch of student program
samples with maximum sample size Nmax and significance
level α for a fair comparison against StochasticGrade.3

Batch Hypothesis Testing will achieve a false rejection rate
of α by design and is, to the best of our knowledge, the
only comparable baseline against StochasticGrade with
an adjustable FRR.

2.2 Controllable Rate of Misgrades
The step-wise FRR αi starts with a small value α/2L, so
with just a few samples from P, StochasticGrade only
marks largely discrepant samples XP as incorrect. As more
samples are collected from XP , αi increases by a factor of 2
each step, and the algorithm rejects more proactively.

As the size of XC becomes infinitely large, this choice for αi

3This is equivalent to StochasticGrade with L = 1 step
with FRR set to 2α.
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Figure 3: Intuition behind each of the disparity functions
presented in Section 2.3. (a) T detects differences in means.
(b) MSD measures the difference in mean and variance. (c)
AD measures how well the samples “mix-in” when ordered
altogether. (d) WS measures how much “work” it takes to
transform one distribution to the other.

guarantees that the probability of misgrading a correct pro-
gram at step i is at most αi = α/2L−i by the choice of the
critical value. Consequently by the union bound4, the prob-
ability that a correct program is marked incorrect at any
step is at most the sum of the false rejection probabilities at
each step, which is ≤ α/2L+α/2L−1+ ...+α/2 ≤ α. There-
fore, the overall probability of rejecting a correct program is
bounded by α.

These theoretical results hold exactly in the limit as the
number of samples in XC approaches infinity. In practice,
StochasticGrade samples a large enough XC for which
the empirical distirbution of the samples quickly converges
to the true distribution and the probability of obtaining a
non-representative sample gets exponentially small with the
sample size (known as the Dvoretzky–Kiefer–Wolfowitz In-
equality [9]). Later in Section 4, we demonstrate empiri-
cally that this achieves the desired false rejection rate in the
real-world assignments we analyzed, even with Monte Carlo
estimation.

Controlling the False Acceptance Rate. To prevent student
mistakes from going unnoticed, it is important to ensure
that incorrect programs are not misgraded as correct. For
any disparity function that converges to 0 with infinitely
many samples only for a pair of identical programs,5 any
desired false acceptance rate (FAR) can be achieved for a
given error program with a large enough maximum sample
size Nmax in the asymptotic limit of NC → ∞. To choose
the Nmax that ensures a FAR of δ for all feasible errors in
the limit, it suffices to consider the error E that is most
“similar” to the solution program and choose the Nmax for
which StochasticGrade (Algorithm 1) with a given FRR
parameter misgrades E at most δ fraction of time. Similar
to estimating the critical value, the probability of error for
each sample size can be estimated using Monte Carlo esti-
mation, and the smallest possible Nmax can be determined
via exponential search.

4The union bound states that P (
⋃n

i=1 Ei) ≤
∑n

i=1 P (Ei).
5T and MSD in Section 2.3 do not, for instance, as they
approach 0 for any pair of programs with identical mean
and variance.



2.3 Selecting the Disparity Function
As mentioned earlier, the user can choose to use any dispar-
ity function f that is most appropriate for the assignment
task. Following is the list of 4 disparity functions we stud-
ied in this work along with their descriptions and charac-
teristics.6 We will empirically validate these properties in
Section 4. (X and σ2 denote sample mean and variance.)

T-Statistic (T): Calculates the absolute unpaired t-statistic

f(X,Y ) = |X−Y |√
σ2
X

+σ2
Y

. It is useful for detecting differ-

ences in means for most errors but has low accuracy
on errors with similar means.

Mean Squared Distance (MSD) Calculates f(X,Y ) = |σ2
X−

σ2
Y |+ (X − Y )2 and measures the difference in spread

of the student program samples around the mean of
the solution samples. It detects large differences in
the overall shape of the distribution but yields low ac-
curacy for more subtle errors.

Anderson-Darling (AD): The Anderson-Darling statistic mea-
sures how well two samples“mix-in”when ordered within
the combined sample. It is sensitive to the subtle dif-
ferences in probability for dense regions of the distribu-
tion, but as it depends on the rank ordering of samples,
it is less sensitive to differences in sparse or extreme
regions.

Wasserstein Distance (WS): TheWasserstein distance has the
intuitive meaning of the minimal cost of transforming
the student distribution into the solution distribution
by“moving”probability masses. WS effectively detects
small differences in the extreme values of the distribu-
tion, but it is less sensitive to very subtle differences in
the dense regions of the distribution compared to AD.

Although T and MSD may be less accurate than AD and
WS in assignments with subtle errors, one of their major
appeals is their dependence only on the summary statistics
of the samples rather than the whole sample. This can be
particularly useful when no subtle errors are anticipated and
one prefers not to process all solution samples.7

2.4 Handling Multi-Dimensional Outputs
The grading mechanism described thus far works for pro-
grams with a single output. The problem of grading pro-
grams withmulti-dimensional output introduces new, unique
technical challenges due to the complex statistical depen-
dencies that may be present across dimensions. This makes
naive adaptations of univariate grading such as calculating
disparity measurements separately for each dimension inef-
fective, as they systematically ignore the correlation across
dimensions that may be critical for grading.

Instead we seek a simple extension of the univariate grad-
ing method through “random projections” [19], which has

6T and AD use a known function to calculate the critical
values, whereas MSD and WS use Monte Carlo estimation
with M = 1k.
7In our experiment we used 500k solution samples, which
takes up only about 3.8MB of storage. This is comparable
to the size of a photo taken with a smartphone.

def simulate_exponential():
LAMBDA = 3.1
n = 1000
time_step = 1 / n
time_elapsed = 0
while random.uniform(0, 1) > LAMBDA / n:

time_elapsed += time_step
return time_elapsed

def algorithmic_art():
ALPHA = 1.6
N_CIRCLES = 5000

for _ in range(N_CIRCLES):
radius = np.random.pareto(ALPHA)
if radius < 150:

draw_circle(radius, x, y, color)

def thompson_sampling(history):
succA = history['A']['n_succ’]
failA = history['A']['trials’] – succA
succB = history['B']['n_succ’]
failB = history['B']['trials’] – succB
pA = scipy.stats.beta.rvs(succA+1, failA+1)
pB = scipy.stats.beta.rvs(succB+1, failB+1)
return 'A' if pA > pB else ‘B’
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def random_numbers():
    N_INTS = 10
    MIN, MAX = 1, 100
    numbers = []
    for _ in range(N_INTS):
        number = random.randint(MIN, MAX)
        numbers.append(number)
    return numbers

    BETA = 1.6

    BETA = 1.6)

Assn#1

Assn#2

Assn#3

Assn#4

Figure 4: Illustration of the assignments in our dataset along
with their solution code.

found many use cases in approximate multivariate hypoth-
esis testing. The idea is to map high-dimensional samples
XC and XP to single-dimensional samples Xp

C and Xp
P using

a real-valued projection that is chosen at random. Doing so
effectively casts a multivariate probability distribution into
a univariate one and allows the univariate disparity func-
tions in Section 2.3 to be used on the projected samples Xp

C
and Xp

P in Algorithm 1. Moreover, the FRR α still applies
after this process. We will study the following 2 types of
random projections:

Orthogonal Projection [19]. A unit vector u is initially sam-
pled uniformly at random, and each sample Xi in X
is orthogonally projected onto u: Xp

i = uTXi.

Euclidean Distance. A reference point r is sampled uniformly
from a bounding box around solution program sam-
ples XC , dilated by a factor of 2 on each side to ensure
distance to points in XC. The Euclidean distance is
calculated from r to each sample: Xp

i = ∥Xi − r∥2.

It is worth noting that projections are not injective, meaning
that different multivariate distributions could in theory get
mapped to similar univariate distributions. Yet, we expect
that errors programmatically implemented by students are
highly unlikely to collide with the solution under a mapping
chosen at random. For Orthogonal Projection, this is sup-
ported by the fact that random linear projections preserve
distance between points with high probability [38], and we
also anticipate that the spherical geometry of a random Eu-
clidean Distance projection would be unnatural to arise in
student programs. While one could use multiple random
projections to decrease the chances of collision, we found 1
projection to be enough in our experiments.



3. EVALUATION SETUP
3.1 Dataset
To empirically validate the performance of Stochastic-
Grade, we curated student-written programs from 4 prob-
abilistic programming assignment tasks (Figure 4) in an in-
troductory computer science course at Stanford University.
These programs were collected through the course’s online
homework system, from which we took both the final stu-
dent submissions and the intermediate progress logs saved
every 5 minutes. From them we randomly selected a subset
of the programs that compiled and produced probabilistic
output. A trained teaching assistant went through each pro-
gram and marked its correctness as well as its specific error
type. Figure 5 shows the statistics of the data we used for
our experiments. Each of the 4 assignments exhibit unique
characteristics that enable us to analyze various aspects of
our grading mechanism. We now describe these assignments
in greater detail.

(Assn#1) Simulate Exponential: Subtle Translations in Dis-
tribution. Students simulate a sample from the exponential
distribution Exp(λ = 3.1), using a discretized loop with in-
cremental (1/1000) steps and making calls to a Bernoulli
coin flip at each iteration. The loop structure, combined
with small step sizes, lends itself to subtle errors that arise
due to an incorrect starting condition, which results in dis-
tributions characterized by very small shifts from the correct
distribution.

(Assn#2) Algorithmic Art: Infrequent but Large Observa-
tions. Students create an artistic collage by drawing random
circles with random colors. The circles’ radii R are drawn
from a Pareto distribution with shape parameter β = 1.6,
but values of R > 150 are discarded. It is worth noting that
the probability of R > 150 is small (≈ 0.0003), but since the
Pareto distribution is “heavy-tailed,” programs that do not
implement curtailment exactly at 150 can occasionally gen-
erate extremely large output values. Due to the exploratory
nature of this problem, other subtle errors also arise from
students modifying the shape parameter β.

(Assn#3) Random Numbers: Multivariate Output. Students
implement a program to sample 10 random integers between
1 and 100 uniformly at random. Each run of the program
consequently produces a list of 10 integers, unlike Assn#1,
2, or 3 which output a single value. In addition to sub-
tle shifts and scaling errors, the multivariate nature of the
assignment occasionally results in errors with incorrect sta-
tistical dependence across dimensions.

(Assn#4) Thompson Sampling: Binary Outputs and Func-
tional Arguments. Students write a function that implements
a single step of a binary Thompson Sampling algorithm,
which chooses one option over the other based on a random
estimate of the rewards for each option. The distribution
of the reward estimate is determined by the “history” argu-
ment that indicates previously observed rewards. A unique
feature of this assignment is that the programs require a
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Figure 5: (Top) Rank-frequency plot (Left) and CDF
(Right) of student errors in each assignment dataset. (Bot-
tom) Statistics of the assignment dataset.

functional argument (history), which yields a different out-
put distribution depending on the values of the argument.

3.2 Experiment Details

Grading Experiment. For each problem, 500k samples were
obtained a priori from the solution program to be used as
XC . For Assn#1, 2, and 3, we ran StochasticGrade
with each of the 4 disparity functions in Section 2.3. The
minimum and maximum sample sizes were set to 400 and
409.6k with sample growth factor R = 4, resulting in L = 6
steps. Since programs in Assn#4 additionally expect a func-
tional argument, we first randomly chose the argument to
be passed into the student program during sampling and ran
StochasticGrade with the T disparity function. We set
the minimum and maximum sample sizes to 50 and 3,200
each, and the sample growth factor was also set to R = 4.

Clustering Experiment. For the clustering experiment, we
used student responses to Assn#1, 3, and 4.8 For all prob-
lems, we used the same 500k solution samples from the grad-
ing experiment. For Assn#1 and 3, samples of varying sizes
from 400 to 409.6k were obtained for each student program,
and high-dimensional samples in Assn#3 were additionally
processed using Euclidean Distance projection. For Assn#4
we varied the student sample sizes from 50 to 3,200 and
used an input argument that was chosen at random, simi-
larly to the grading experiment. For every student program,
we calculated the disparity between samples from the stu-
dent program and samples from the solution program and
ran hierarchical agglomerative clustering using these mea-
surements as an input feature.9 This process was repeated
for each of the 4 disparity functions from Section 2.3 except
for Assn#4 for which we only used T. The quality of the
clusters was measured using Adjusted Rand Index (ARI)
and Normalized Mutual Information (NMI).10

8Assn#2 was not used because an overwhelming number
of student programs were unique and didn’t form enough
clusters to be informative.
9We chose the best performing number of clusters from [25,
50, 75, 100, 125, 150].

10ARI considers the number of pairs assigned to the same or
different clusters in the true predicted clusters. NMI mea-



Table 1: Overall accuracy on grading correct programs for StochasticGrade measured over 10,000 independent trials.
Disparity functions with (*) used Monte Carlo estimates to obtain the critical values.

Assn#1 Assn#2 Assn#3 Assn#4
α T MSD* AD WS* T MSD* AD WS* T MSD* AD WS* T

0.003 .998 .996 .998 .999 .999 .998 .999 .995 1.0 .996 .998 .997 .998
0.01 .996 .991 .996 .998 .995 .996 .998 .986 .997 .989 .996 .991 .992
0.05 .972 .966 .978 .994 .981 .974 .988 .938 .981 .938 .981 .957 .960
0.1 .939 .913 .966 .983 .951 .962 .975 .883 .956 .893 .966 .912 .902

Table 2: Overall accuracy on grading incorrect programs for StochasticGrade (SG) and Batch Hypothesis Testing (HT).

Assn#1 Assn#2 Assn#3 Assn#4
α T MSD AD WS T MSD AD WS T MSD AD WS T

0.003
SG .833 .819 .999 .841 .919 .989 .510 .986 1.0 .993 1.0 1.0 .987
HT .833 .818 1.0 .839 .913 .983 .507 .989 1.0 .993 1.0 1.0 .978

0.01
SG .835 .818 1.0 .840 .936 .992 .515 .986 1.0 .993 1.0 1.0 .987
HT .842 .818 1.0 .840 .916 .983 .510 .986 1.0 .993 1.0 1.0 .981

0.05
SG .850 .823 1.0 .846 .947 .992 .518 .992 1.0 .993 1.0 1.0 .997
HT .856 .825 1.0 .841 .936 .986 .518 .992 1.0 .993 1.0 1.0 .990

0.1
SG .858 .835 1.0 .845 .955 .992 .538 .992 1.0 .993 1.0 1.0 .997
HT .868 .837 1.0 .844 .961 .989 .521 .992 1.0 .993 1.0 1.0 .997

4. GRADING RESULTS
In this section, we demonstrate that StochasticGrade
achieves the desired False Rejection Rate (FRR) and ex-
hibits exponential speed up along with nearly identical grad-
ing accuracy compared to standard hypothesis testing.

4.1 Performance Analysis

Accuracy on Correct Programs. We begin by analyzing the
overall False Rejection Rate (FRR) of StochasticGrade.
Recall that the hyperparameter α is the desired bound on
the rate of misgrading correct programs (Section 2.) Table 1
reports the accuracy of StochasticGrade on grading cor-
rect programs for various values of α, measured over 10,000
independent trials. For all disparity functions that do not
use Monte Carlo estimates, the error rates all lie within –
and are often substantially smaller than – the desired FRR
α. Also, for disparity functions that rely on Monte Carlo
estimates, the error rates are within a tolerable margin (at
most 0.017 away) from α.

Accuracy on Incorrect Programs. Next we turn to the power
of StochasticGrade on accurately recognizing an incor-
rect program. Table 2 shows the grading accuracy on incor-
rect programs for StochasticGrade and Batch Hypoth-
esis Testing (Section 2.1) using the same test statistic and
significance level α. For all problems, StochasticGrade
achieves perfect or near-perfect accuracy with at least one
disparity function. The performance difference compared to
Batch Hypothesis Testing is negligible, and Stochastic-
Grade even slightly outperforms Batch Hypothesis Testing
by up to 2.0% on Assn#2.

Note that the high-performing disparity functions differ across

sures the amount of mutual statistical dependence between
the two clusterings.
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Figure 6: Grading speed of StochasticGrade relative to
Batch Hypothesis Testing on all incorrect programs. Across
all disparity functions and assignments, StochasticGrade
is exponentially faster than HT on most programs, by up to
a factor of 1,024 in many cases. (Note the log scale in the
y-axis.)

problems. For Assn#1, where the popular error programs
result in subtle shifts in the distribution, AD achieves per-
fect accuracy whereas other disparity functions perform no-
ticeably worse. On the other hand, AD performs poorly on
Assn#2 where many errors result in rare occurrences of ex-
treme values. We will provide a more in-depth analysis of
the performance of each disparity function on different error
types in Section 4.2.

Exponential Speedup. The advantage of StochasticGrade
over hypothesis testing becomes most evident in runtime.
Figure 6 plots the distribution of speedup achieved by Stochas-
ticGrade compared to Batch Hypothesis Testing on iden-
tifying incorrect programs, where “runtime” is measured by
the number of samples required from the error program.
Considering that Batch Hypothesis Testing requires the full
set of samples, StochasticGrade allows exponential (up
to 1, 024 times) speedup for many evident errors, which are
often detected with only 400 samples.
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Figure 7: Accuracy and average number of samples required
for different errors of Assn#1 (Top) and Assn#2 (Bottom)
measured over 1,000 independent iterations with α = 0.01.

4.2 Analysis for Different Error Types
The results from Section 4.1 suggest that the accuracy and
runtime of StochasticGrade depend crucially on the choice
of the disparity function. This section will study the rela-
tive strengths and limitations of each disparity function and
random projection method presented in Section 2. We will
choose several elusive errors from Assn#1, 2, and 3 and
look at the the accuracy of StochasticGrade on identify-
ing these errors along with the number of samples required
when each disparity function and random projection method
is used. For all experiments we ran StochasticGrade with
α = 0.01.

Univariate Grading. Figure 7 plots the runtime and grad-
ing accuracy for 3 elusive errors each from Assn#1 and
Assn#2 with α = 0.01, measured over 1,000 independent
trials. The details of the errors we analyzed are as follows:
In Assn#1, ReturnPois returns samples from a Poisson dis-
tribution Poi(λ = 1/3.1) instead of the Exponential, which
are two very different distributions that happen to have
identical means. OffBy{p} are subtle translations of the
output by +p. In Assn#2, LargerThan150 omits the step
of dismissing outputs larger than 150 after sampling from
Pareto(β = 1.6), and LessThan{n} rejects values smaller
than n instead of 150. As noted earlier in Section 3.1, this
changes the behavior of the program only ≈ 0.03% of the
time but may occasionally output extremely large values.

Most notably, all disparity functions efficiently detect the
largely deviant error of ReturnPois with very few samples
except for T. Although this is a particular example of an
error with a mean that is identical to the solution, it illus-
trates an important failure point for disparity functions that
only compare a summary statistic.

Next, we observe that AD is more sensitive to differences in
the “typical” regions of the distributions than other dispar-
ity functions, as discussed in Section 2.3. OffBy0.002 and
OffBy0.001 errors incur very small changes in the probabil-
ities of the high-density regions of the solution distribution,
to which AD is particularly sensitive. For instance, on de-
tecting OffBy0.002, T, MSD, and WS achieve low accuracy
whereas AD performs perfectly. AD also completely iden-

tifies the more subtle OffBy0.001 errors with around 300k
samples on average, whereas all other disparity functions
achieve 0% accuracy.

In contrast, AD completely fails to recognize the close errors
in Assn#2. Programs with these errors rarely behave dif-
ferently from the solution program, but when they do, they
generate values that are large or even unbounded. MSD is
the most effective in detecting these errors because it is sen-
sitive to the difference in the spread of the distribution, and
it perfectly detects these errors with the fewest number of
samples among all disparity functions. WS also performs
well as it detects the difference in the magnitude of the out-
put values, although it performs slightly worse than MSD on
LessThan200, which is most subtle among the three errors.

Multivariate Grading. Figure 8 illustrates the runtime and
grading accuracy for 5 errors11 from Assn#3 for various dis-
parity functions and two random projection methods. In
{Single/All}Coord+1, the error programs add 1 to the last
element or all elements of the output vector, which results in
a small translational shift in the distribution of the output.
Repeat{All/Last/Random}Coord errors involve duplicating
values across the entire vector, the last two elements, or
a randomly selected pair of elements in the output vector.
While these errors do not alter the mean of the distribu-
tion, they create minor but spurious correlations among the
coordinates.

First we notice that AD and WS both perform consistently
well under both types of random projections, achieving per-
fect accuracy across nearly all error types with similar sam-
ple efficiency. This is unlike in Assn#1 and Assn#2 where
the peculiarities of the error distributions (i.e., occasional
extremes and very small translations) caused each disparity
function to fail respectively. The errors in the figure do not
exhibit such peculiarities both before and after projection,
so these two disparity functions perform comparably.

On the other hand, the performances of T and MSD contrast
with one another. The projections of the {*}Coord+1 errors
entail a noticeable difference in means but a relatively small
difference in the spread compared to the projection of the
solution distribution. As expected, T effectively picks up on
the difference in means with relatively few samples, whereas
the small difference in the spread misleads MSD. Conversely,
the Repeat{*}Coord errors result in a change in covariance
and no difference in means, which causes the projections
to also exhibit a noticeable change in spread but no more
than a small difference in means relative to the solution.
MSD is effective and often more efficient than WS or AD
in identifying these errors, whereas T either requires many
samples or fails. These results confirm the properties of the
two disparity functions as outlined in Section 2.3.

Random Projections. Figure 8 also suggests the utility of
orthogonal projection (OP) and Euclidean distance projec-

11For analysis purposes, we added 3 artificial errors in addi-
tion to AllCoord+1 and RepeatAllCoord that were observed
in the dataset.
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Figure 8: Accuracy and average number of samples required for 5 different errors of Assn#3 using Euclidean Distance
projection (Top) and Orthogonal Projection (Bottom), measured over 1,000 iterations with α = 0.01. See Section 4 for detail.

tion (ED) depending on the geometry of the error distri-
bution. OP preserves noticeable linear translations or di-
rectional changes in the spread of the distribution, allowing
most disparity functions to recognize AllCoord+1 and Re-

peatLastCoord with fewer samples than with ED. However,
the non-linear geometry of ED proves to be more effective at
detecting a wider variety of more subtle errors, allowing Sin-
gleCoord+1 and RepeatAllCoord to be noticed with fewer
samples than OP. It also exposes the elusive RepeatRandom-
Coord error to most disparity functions, which OP cannot
capture.

5. CLUSTERING RESULTS
In addition to evaluating programs as correct or incorrect,
instructors often seek to understand the errors in the stu-
dent programs more closely. Clustering student programs
by their error type can allow instructors to quickly iden-
tify patterns of common mistakes among students, assign
partial credit, and provide high-quality personalized feed-
back [5, 14, 13]. In this section, we demonstrate that the
disparity measurements calculated by StochasticGrade
convey enough identifying information about the error to be
used as a simple feature for effective clustering. Moreover,
we demonstrate that concatenating12 the disparity measure-
ments calculated using more than one disparity function,
random projection, or random input case can profoundly
enhance the quality of clustering.

The improvement effect of composing multiple disparity mea-
surements can be understood by considering the disparity
measurement as a “view” of the error distribution. Measure-
ments from multiple scorers, random projections, and input
cases diversify the set of perspectives into the program and
yield a higher resolution representation. For each assign-
ment, we will now present the clustering results and analyze
the effect of composing different types of disparity measures.

Assn#1: Composing Measurements from Multiple Dispar-
ity Functions. Figure 9 plots the clustering performance for
Assn#1 using each of the 4 disparity measurements alone

12More precisely, the disparity measurements were normal-
ized to zero mean and unit variance prior to concatenation
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Figure 9: Clustering performance for Assn#1. Composing
multiple disparity functions enhances clustering.

(red) and an incremental concatenation of multiple disparity
measurements (other colors) as input features. We observe
that AD performs the best among all disparity functions
while MSD and T do the worst. Notice, however, that com-
bining measurements from AD and MSD improves clustering
performance beyond any single disparity function, surpass-
ing AD by as much as 0.13 ARI. Moreover, concatenating
more disparity measurements increases the clustering per-
formance almost monotonically, where combining all 4 mea-
surements outperforms AD by up to 0.1 on NMI and reaches
AD’s NMI at 409.6k samples with 64 times fewer samples.

Assn#3: Composing Disparity Measurements Derived from
Multiple Projections. Figure 10 presents the clustering re-
sults for Assn#3 using disparity measurements calculated
from a varying number of random Euclidean distance pro-
jections. The figure displays the results for the best and
worst performing disparity measurements, which were AD
and MSD respectively. We see that concatenating disparity
measurements from multiple random projections dramati-
cally increases clustering quality for both AD and MSD even
with relatively small sample sizes. Moreover with 100k sam-
ples, composing 4 random projections for MSD results in
near-perfect clustering with up to a remarkable 0.8 increase
in NMI and 0.5 in ARI compared to using a single projec-
tion.
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input cases enhances clustering.

Assn#4: Composing Measurements Derived from Multiple
Input Arguments. For Assn#4, Figure 11 shows the effect
of combining multiple T measurements obtained by passing
in several different input arguments (cases) to the student
programs. Although T already achieves strong performance,
using disparity measurements generated by more than one
input case generally improves clustering, achieving up to
0.04 ARI and 0.09 NMI increase with only 1 additional case.

6. GUIDELINES FOR PRACTITIONERS
What problem does StochasticGrade address? You may
want to auto-grade programs that produce probabilistic out-
put through randomization. StochasticGrade is an open-
source solution to this problem, implemented in Python.

What are the properties of an assignment for which
you could apply StochasticGrade? You need to be able
to run the student code and collect a sample, which is its
output. That sample should be translatable into a number
or a list of numbers. Note that you don’t need Stochas-
ticGrade for programs with deterministic output, even if
they use probability theory. It is designed for programs that
generate probabilistic outputs.

On a high level, how does StochasticGrade work? The
auto-grading algorithm is based on hypothesis testing the-
ory. First, preprocess.py collects samples from the correct
answer before grading, which could take several minutes. At
the time of grading, stochasticgrade.py auto-grades stu-
dent programs primarily based on 3 important parameters:
(1) which “disparity function” to use, (2) the desired false
rejection rate (FRR) which is the probability of misgrading
a correct program, and (3) the maximum number of samples
to collect from the student program. The grader will keep
sampling from the student program until it is confident that
the program is either correct or incorrect, not exceeding the
maximum number of samples. In the paper, we showed that
this allows up to 1,024x speedup in some cases.

Which disparity function should I choose? For de-
tecting most errors, any function from Section 2.3 should
suffice. Our default suggestion is to use AD, which is sen-
sitive to subtle mismatches in the probability distributions.
If you expect some error programs to be “heavy-tailed” or
occasionally output extreme values, WS works better than
AD. If you cannot afford to store or process many samples
(e.g., due to tight memory constraints or you’re using a web-
app that grades on the client-side), you can use T or MSD
that only depend on summary statistics, but these disparity
functions may not detect subtle errors.

What FRR should I use? Our default value is 0.01 which
will mark at least 99% of correct programs as correct, but
you can also set it to a smaller value of your choice like
0.003. Note that the false rejection cases would need manual
re-grading. (See the guideline below on repeated grading.)

How do I select the maximum sample size? It depends
on your problem and your tolerance for misgrades. If you ex-
pect students to make very subtle errors, you will need more
samples. If you have a lower tolerance for misgrades, you will
also need more samples. To select n_samples we suggest you
implement the buggy student program which is most similar
to the correct answer and run our choose_n script. The most
important inputs to this script are: (correct_program, er-

ror_program, disparity_fn, FRR, FAR = None). It will
either return the smallest N or an error if FAR is not appli-
cable to the disparity function you provided (T or MSD).

What should I do with the other parameters? These
parameters can be set to the default values we provide in
our code, and we believe they will work well in most cases.
In addition to the 3 most important parameters mentioned
above, other configurable parameters include the minimum
sample size Nmin, the sample growth factor R (Algorithm 1),
and the number of Monte Carlo iterations M in our critical
value algorithm (Algorithm 2). In our implementation, the
default values are set to: Nmin = 400, R = 4, and M = 1000.
However, users can adjust the behavior (e.g., runtime or
precision) of our algorithm as they wish by changing these
parameters. Our public repository has more detailed guide-
lines about how to adjust these parameters.

Can students submit multiple times? This might break
the control over FAR you are trying to achieve. If you run
the test on the same buggy program many times, it becomes
more likely that at least one run will report that it is correct.



7. DISCUSSIONS AND LIMITATIONS

Evaluating Other Aspects of Good Programming. In this work
we have shown that StochasticGrade can accurately eval-
uate whether student programs are functionally correct. Func-
tional correctness is indeed critical, but it is only one of
many components of writing good software. Algorithmic ef-
ficiency, program style, readability, and intuitive program
decomposition are other key components of programming
that StochasticGrade does not explicitly capture but are
important areas for feedback to be included in grading.

Grading Efficiency. StochasticGrade is designed to ter-
minate early for grossly discrepant error programs, and this
leads to a significant speedup on identifying incorrect pro-
grams compared to standard batch hypothesis testing. For
correct programs, however, the algorithm must obtain the
maximum numberNmax of samples before it determines that
the program is correct.13

Similar issues also arise when obtaining a large solution pro-
gram sample XC during preprocessing. These runtime con-
straints are tolerable when student programs run fast, which
is often the case for introductory programming or simple
probabilistic modeling assignments. For more complex as-
signments that involve sophisticated algorithmic manipula-
tion (e.g., implementing statistical inference algorithms or
training routines for machine learning applications) where
completing a single run of each program can be slow, the
current form of StochasticGrade could be impractical.

One possible approach to reducing the required amount of
samples and increasing the efficiency of grading is to incor-
porate insights from program traces, such as variable assign-
ment at runtime and execution paths. While the proposed
StochasticGrade algorithm relies solely on the final out-
put of the program, additionally considering these program
traces could increase the amount of diagnostic information
that can be obtained with fewer samples. We leave this
direction as an interesting topic for future research.

Clustering and Sampling. In Section 5 we demonstrated that
StochasticGrade’s disparity measurements can be used
for efficient and effective clustering of student programs by
their error type. One caveat of our clustering results is that
they are based on disparity measures calculated using a fixed
number of samples for all student programs (Section 3.2).
StochasticGrade can adaptively decide to obtain a dif-
ferent number of samples from each program, and cluster-
ing should ideally be done using only those samples. Even
with the same disparity function, however, different sample
sizes lead to disparity measurements of disparate scales, and
clustering them altogether typically leads to poorer cluster
quality. Identifying clusters with identical error types based
on StochasticGrade’s adaptive sample sizes remains an
important area for improvement.

13The optimal Nmax for a target error program can be esti-
mated based on the ideas discussed in Section 2.2 and are
implemented in the choose_n.py script of our open-source
library. However, Monte Carlo estimation can be slow even
with parallelization.

Practical Limitations to the Theoretical Error Guarantee. As
noted in Section 2.2, the theoretical error guarantees for
the FRR and FAR hold in the limit where the size of the
solution program sample XC approaches infinity. To get as
close to this limit as possible, StochasticGrade obtains a
large XC prior to grading (set to 500k samples by default)
and uses this to grade all student programs. For the 4 real
classroom assignments we studied, 500k solution samples
were sufficient to achieve the guaranteed FRR, and it only
took less than a minute (Figure 5) and about 3.8MB of space
to obtain and store all samples for AD and WS.

In more resource-constrained settings, however, using dis-
parity functions like AD and WS that require access to all
samples can cause considerable space and transmission bot-
tleneck for larger sample sizes. This can happen, for in-
stance, when students in a massive online classroom run
StochasticGrade locally on memory-constrained devices
or browsers and XC has to be sent over a network. Im-
proving the sample complexity of the grading algorithm or
designing new disparity functions that achieve both mem-
ory efficiency and grading accuracy14 will greatly improve
the adaptability of StochasticGrade.

8. CONCLUSION
Stochastic programs are a crucial paradigm in many areas
of computer science education, but to the best of our knowl-
edge, no prior work has addressed the problem of auto-
grading these types of programs. In this paper, we for-
malized this problem and developed an open-source auto-
grading framework, StochasticGrade. Our framework is
able to accurately recognize errors in exponentially less time
than standard two-sample hypothesis testing while allowing
users to explicitly control the rate of misgrades. Moreover, it
can efficiently handle programs with multidimensional out-
put and allows a flexible choice of the metric of disparity
between samples to be used throughout the grading process.
We showcased 4 disparity metrics and explored their respec-
tive strengths and limitations. Measurements made using
these metrics are also useful for simple and effective cluster-
ing of programs by error type. We demonstrated the grading
and clustering capabilities of StochasticGrade using real
programming assignment data and provided guidelines for
practitioners who wish to use our open-source framework.

Several promising avenues for future research lie ahead. First,
further improvements in the efficiency of identifying correct
programs could be sought after. Next, noting that student
errors fall across a wide spectrum, exploring the space of
errors in student-written stochastic programs may help in-
structors anticipate the error typology when configuring our
auto-grading framework and allow them to make informed
decisions about the use of our algorithm. Lastly, as our
present work focuses on grading and clustering, a natural
next step would involve automatically building rubrics for
partial grading and providing high-quality, targeted feed-
back to students. We hope our work illuminates exciting
new directions in the study of stochastic program in com-
puter science education.

14As noted in Section 2.3, T and MSD are memory efficient
as they depend only on the summary statistics, but they
could often be inaccurate.
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assessment in computer science education: A
state-of-the-art review. ACM Transactions on
Computing Education (TOCE), 22(3):1–40, 2022.

[26] F. A. K. Panni and A. S. M. L. Hoque. A model for
automatic partial evaluation of sql queries. In 2020
2nd International Conference on Advanced
Information and Communication Technology
(ICAICT), pages 240–245. IEEE, 2020.

[27] S. Papert. An exploration in the space of mathematics
educations. Int. J. Comput. Math. Learn.,
1(1):95–123, 1996.

[28] M. Peveler, E. Maicus, and B. Cutler. Automated and
manual grading of web-based assignments. In
Proceedings of the 51st ACM Technical Symposium on
Computer Science Education, pages 1373–1373, 2020.

[29] S. M. Ross. A course in simulation. Prentice Hall
PTR, 1990.

[30] S. Sahai, U. Z. Ahmed, and B. Leong. Improving the
coverage of gpt for automated feedback on high school
programming assignments. In NeurIPS’23 Workshop
Generative AI for Education (GAIED). MIT Press,
New Orleans, Louisiana, USA, volume 46, 2023.

[31] M. Sahami. A course on probability theory for
computer scientists. In Proceedings of the 42nd ACM



technical symposium on Computer science education,
pages 263–268, 2011.

[32] F. W. Scholz and M. A. Stephens. K-sample
anderson–darling tests. Journal of the American
Statistical Association, 82(399):918–924, 1987.

[33] R. B. Shapiro and M. Tissenbaum. New programming
paradigms. In The Cambridge Handbook of Computing
Education Research, pages 606–636. Cambridge
University Press, 2019.

[34] V. S. Shekhar, A. Agarwalla, A. Agarwal, B. Nitish,
and V. Kumar. Enhancing jflap with automata
construction problems and automated feedback. In
2014 Seventh International Conference on
Contemporary Computing (IC3), pages 19–23. IEEE,
2014.

[35] A. C. Siochi and W. R. Hardy. Webwolf: Towards a
simple framework for automated assessment of
webpage assignments in an introductory web
programming class. In Proceedings of the 46th ACM
Technical Symposium on Computer Science Education,
pages 84–89, 2015.

[36] I. Solecki, J. Porto, N. d. C. Alves, C. Gresse von
Wangenheim, J. Hauck, and A. F. Borgatto.
Automated assessment of the visual design of android
apps developed with app inventor. In Proceedings of
the 51st ACM Technical Symposium on Computer
Science Education, pages 51–57, 2020.

[37] A. Stuhlmüller and N. D. Goodman. A dynamic
programming algorithm for inference in recursive
probabilistic programs. arXiv preprint
arXiv:1206.3555, 2012.

[38] S. S. Vempala. The random projection method,
volume 65. American Mathematical Soc., 2005.

[39] M. Wu, M. Mosse, N. Goodman, and C. Piech. Zero
shot learning for code education: Rubric sampling
with deep learning inference. In Proceedings of the
AAAI Conference on Artificial Intelligence,
volume 33, pages 782–790, 2019.

[40] L. Yan, N. McKeown, and C. Piech. The
pyramidsnapshot challenge: Understanding student
process from visual output of programs. In Proceedings
of the 50th ACM Technical Symposium on Computer
Science Education, pages 119–125, 2019.


